Exploiting Word Internal Structures for Generic Chinese Sentence Representation

نویسندگان

  • Shaonan Wang
  • Jiajun Zhang
  • Chengqing Zong
چکیده

We introduce a novel mixed characterword architecture to improve Chinese sentence representations, by utilizing rich semantic information of word internal structures. Our architecture uses two key strategies. The first is a mask gate on characters, learning the relation among characters in a word. The second is a maxpooling operation on words, adaptively finding the optimal mixture of the atomic and compositional word representations. Finally, the proposed architecture is applied to various sentence composition models, which achieves substantial performance gains over baseline models on sentence similarity task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Character-Level Dependencies in Chinese: Usefulness and Learning

We investigate the possibility of exploiting character-based dependency for Chinese information processing. As Chinese text is made up of character sequences rather than word sequences, word in Chinese is not so natural a concept as in English, nor is word easy to be defined without argument for such a language. Therefore we propose a character-level dependency scheme to represent primary lingu...

متن کامل

Exploiting unlabeled internal data in conditional random fields to reduce word segmentation errors for Chinese texts

The application of text-to-speech (TTS) conversion has become widely used in recent years. Chinese TTS faces several unique difficulties. The most critical is caused by the lack of word delimiters in written Chinese. This means that Chinese word segmentation (CWS) must be the first step in Chinese TTS. Unfortunately, due to the ambiguous nature of word boundaries in Chinese, even the best CWS s...

متن کامل

Using Morphological and Syntactic Structures for Chinese Opinion Analysis

This paper employs morphological structures and relations between sentence segments for opinion analysis on words and sentences. Chinese words are classified into eight morphological types by two proposed classifiers, CRF classifier and SVM classifier. Experiments show that the injection of morphological information improves the performance of the word polarity detection. To utilize syntactic s...

متن کامل

A Hybrid Model for Chinese Word Segmentation

This paper describes a hybrid model that combines machine learning with linguistic and statistical heuristics for integrating unknown word identification with Chinese word segmentation. The model consists of two major components: a tagging component that annotates each character in a Chinese sentence with a position-of-character (POC) tag that indicates its position in a word, and a merging com...

متن کامل

Improve Chinese Word Embeddings by Exploiting Internal Structure

Recently, researchers have demonstrated that both Chinese word and its component characters provide rich semantic information when learning Chinese word embeddings. However, they ignored the semantic similarity across component characters in a word. In this paper, we learn the semantic contribution of characters to a word by exploiting the similarity between a word and its component characters ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017